您的位置:新文秘网>>毕业论文/文教论文/>>正文

论文:如何促进研发驱动型经济增长:R&D补贴还是创新型技能培育

发表时间:2015/6/30 17:03:46
目录/提纲:……
一、引言
二、模型
(一)所示关系,其中曲线MM代表
三、比较静态效应
]五、模型结论的稳健性讨论
六、中国的经验分析
(一)数据选择
3、科学家和工程师数量(KG)
(二)时间序列的平稳性检验
(三)时间序列的协整检验
表二、Johansen协整检验结果
同理,对于第二、第三个检验,分别有如下协整方程:
(四)对协整结果的解读
七、结论及政策意义
……
论文:如何促进研发驱动型经济增长:R&D补贴还是创新型技能培育

【内容提要】 本文将异质型人力资本在经济中的不同作用及其转换条件纳入模仿与创新的一般均衡模型,分析了激励研发需求和改善研发资源供给的政策对促进经济增长和改善收入差距的影响。分析表明:在有限研发资源约束下,单方面补贴创新或模仿可能抑制经济增长,并且当创新型人力资本培育效率较低时,对创新和(或)模仿的补贴扩大了均衡时的收入差距;而提高创新型人才培育效率和减少创新型人力资本积累中的私人成本能明显促进研发驱动型经济增长,并缩小收入差距。基于我国的经验分析表明:刺激研发需求的科技政策对技术创新和经济增长的长期效应要远远小于核心研发资源供给增加的长期效应,并且刺激研发需求的科技政策通过对研发资源的再配置对技术进步有抑制效应。其政策含义是:促进研发驱动型经济增长的政策应当优先考虑改善研发资源供给,特别是提高创新型技能培育效率,刺激研发需求的政策应当在富有弹性的研发资源供给的条件下进行。
关键词:R&D补贴 异质型人力资本 技术创新 模仿 内生增长 收入差距
JEL分类号:C22 F43 O11 O34 中图分类号 F019.1 F062.9


一、引言

“激励研发需求的R&D补贴政策有长期的增长效应”是以R&D为基础的内生增长文献的一个重要结论。因为在以R&D为基础的内生增长模型中,技术进步促进经济增长,而技术进步取决于企业的研发投入,由于研发补贴激励企业投入更多研发资源从事水平和垂直创新,从而促进经济增长。所以在研发驱动型增长框架下,预期补贴研发提高长期经济增长率是很自然的。如Romer (1990), Segerstrom et al.(1990), Grossman and Helpman(1991)以及Aghion and Howitt(1992)都发现R&D补贴鼓励企业研发从而提高了长期的经济增长率。并且,间接刺激企业研发需求的政策也能促进长期经济增长,如Rivera-Batiz and Romer(1991)认为降低关税导致世界经济增长率的提高。在这一理论预期的引导下,各国政策通过研发补贴、税收优惠等各种刺激研发需求手段大力鼓励研发投入。
但这一理论和实践受到了Jones(1995)等人的质疑,他指出上述内生增长模型的“规模效应”特征,即企业研发投入越多经济增长越快,与现实不符。因为自1950年来,法国、德国、日本和美国参与研发的科学家和工程师数目在几十年来快速上升,但人均收入增长率却没有显示出相应的上升趋势。当Jones以递减的技术机会特征消除Romer (1990
……(新文秘网https://www.wm114.cn省略1762字,正式会员可完整阅读)…… 
rstrom (1991)的基本分析框架,但我们的模型考虑了异质型人力资本在经济中的不同作用,即研发活动需要有特定创新技能的高质人力资本,而低质人力资本(非熟练劳动)用于最终产品生产,并且从非熟练劳动转变为创新型高质人力资本需要进行研发技能培训,并支付相应的成本。这与Segerstrom (1991)、Grossman and Helpman(1991)和Romer(1990)的内生增长模型不同,在他们的模型中,用于最终产品生产和研发活动的人力资本并无差异,并且人力资本从最终产品生产部门分配到研发部门也没有任何转换成本,所以刺激研发需求的研发补贴政策能使人力资本在最终产品部门和研发部门间顺畅分配。但这一假设的明显不足是没有考虑创新型人力资本的供给在短期内是相当缺乏弹性的,研发补贴不能有效增长研发投入,只会提高创新型人力资本的工资(Romer,2000)。本文改进这一假设是基于Benhabib与Spiegel(1994)Andrew(2004)等人的实证结论,他们的实证研究表明:基于人力资本的异质性特征,不同类型人力资本对经济增长的作用会有所不同,高质人力资本对技术进步作用更明显,而低质人力资本主要通过产品生产促进经济增长。本文中的模仿不再如Dinopoulos et al (1993)是无成本活动,也不类似Grossman and Helpman (1991b)面临与创新不同的成本条件,创新与模仿从同一要素市场购置研发资源进行研发。

二、模型
遵循Segerstrom (1991) 和Grossman and Helpman(1991)的基本框架,假定经济中有种有差异的最终产品,,分别由最终产品部门的每一个产业提供,每一种最终产品的质量都可沿质量阶梯无限提高,每次提高的步长为外生给定,技术进步表现为产品质量的升级。最终产品市场有两类市场结构:完全垄断与双寡头垄断市场,所有产品市场实现极限定价,双寡头实行合谋并平分利润。完全垄断产业的垄断厂商没有创新动力,除非其技术被模仿,使得市场结构转变为双寡头垄断市场时,创新才会发生,所以模仿与创新共同促进技术进步和经济增长。但本文模型不同的是:最终产品部门与研发部门不再使用同一中人力资本。遵循Parello C (2006)有关异质型人力资本的假设,认为不同类型的人力资本(创新型人力资本和非熟练劳动)在经济中的作用是不相同的,假定非熟练劳动本主要用于生产最终产品,而创新型高质人力资本主要用研发。并且非熟练劳动转变为创新型人力资本需要相应的技能培训,并支付私人成本。长期内创新型人力资本的供给弹性取决于高等教育部门的创新型技能培育效率。
1.创新型技能培育与人力资本供给市场
基于Grossman and Helpman(1991)和Parello C (2006)的基本分析思路,考虑两种人力资本:创新型高质人力资本H(熟练劳动)和低质人力资本L(非熟练劳动)。假定一国经济中的人口分布是连续的,且每一个人的寿命均为T,在每一时刻年龄分布是均匀的,在0~T之间每个年龄的人口分布密度是N/T,总人口数是N。每个以效用最大化为目标的个人有成为熟练劳动力和非熟练劳动力两种选择。个人以哪种方式进入劳动力市场,取决于两种方式一生收益的尽现值的比较。每个时点,每个人都必须将其时间投入到三项活动中的一项:作为非熟练劳动就业,作为研发人员就业,或者投入时间积累创新型技能。非熟练劳动一生的收益的尽现值为:
(1)
式中wL为非熟练劳动力工资。如果个人将决定以研发工人(熟练劳动力)就业,他(她)必须花费S年学习,并支付的私人成本, 。在这段时间内获得的专业技能数量为h(D,S), h(D,S)体现创新型技能的培养效率,是政府教育支出D和个人学习时间S的增函数。并可获得平均技能的外溢,衡量人力资本的外溢程度。其一生的收益的尽现值为:
(2)
假定每一个的学习能力一样,偏好也一样。均衡中,两种人力资本的收益的尽现值应相等,根据(1)式等于(2)式有均衡时的相对工资率:
(3)
均衡中,熟练劳动力的净工资率必须大于或等于非熟练劳动力工资率,以确保熟练劳动能够补偿其人力资本积累成本。
令表示选择获取专业技能的人口比例,那么任何时刻,总人口中有数量的个人选择在学校学习,而在其余的个人中,选择作为非熟练劳动就业的人数为:
(4)
选择作为熟练劳动就业的人数为。每一个熟练劳动都获得数量的创新技能,所以总创新型人力资本为,利用有:
(5)
(6)

2. 最终产品的消费与生产市场
考虑一个具有连续产业的经济,每个产业的产品质量是可计数的。所有消费者的消费偏好相同,其一生效用函数为:
(7)
其中,为消费者在时间的瞬时效用,为主观贴现率,具体形式为:
(8)
其中,代表在时刻对产业生产的质量指数为j的产品的消费量,代表高质量产品相对低质量产品的改进程度,产业总数为1。消费者的终生预算约束为:
(9)
其中为现有资产价值与将来劳动收入现值的总和;是到时刻的积累利息率,即,为在时刻的瞬时利率;代表在时刻由产业生产的质量指数为j的产品的价格。
代表性消费者在给定价格下分配支出以最大化瞬时效用,根据此静态分配问题,有:
(10)
式中是可获得质量水平的集合,消费者所消费产品的价格质量比()最低,Z代表最高质量阶梯。假定企业在的最低水平定价,消费者仅购买最高质量水平的产品。于是(10)式可化为静态的需求函数:
(11)
将(8)、(11)式代入(7)式,求解代表性消费者在终生预算约束(9)式下最大化终生效用(7)式,有最优的支出路径:
(12)
(12)式表示在经济达到稳态时,市场利率是恒定的,并等于消费者的主观贴现率,。最终产品市场有两类市场结构:完全垄断与双寡头垄断市场。创新的技术没有被模仿的市场是完全垄断市场;在创新的技术被模仿的市场为双寡头垄断市场,所有产品市场实现极限定价以获得所有消费者,即:
(13)
假定非熟练劳动L是最终产品生产的唯一的要素,而且一单位非熟练劳动生产一单位的产出。生产最终产品企业的利润表示为,非熟练劳动力工资wL被单位化为1。根据企业追求利润最大化的原则,结合(11)和(13)式中所给出的需求和价格可知道,垄断市场上利润:
(14)
根据Segerstrom (1991),在双寡头垄断市场上,两个质量领先企业生产同质产品,他们合谋共同平分利润:
(15)

3. 研发市场
研发部门是充分竞争性的,研发部门开发新产品的设计方案,出售给最终产品生产部门。技术的生产并不再像Romer (1990) 和 Grossman & Helpman(1990)所刻画的使用一种与最终产品生产无差异的人力资本进行生产。遵循Parello C(2006)等最新的内生增长文献,研发部门利用创新型高质人力资本从事两种研发活动:技术模仿与创新。创新与模仿发生在不同的行业:在完全垄断行业中,垄断厂商可获得全部垄断利润,没有创新的动力,除非模仿发生,模仿只发生在完全垄断行业;而在双寡头垄断行业中,企业通过创新可获得将来的垄断利润,创新只发生在双寡头垄断行业中。假定完全垄断行业在全部行业中所占比例为,双寡头垄断行业为。
在双寡头垄断行业中,从事创新研发的企业,其研发强度为I,在时间间隔内开发新技术的概率为,为达到研发强度I,需在每单位时间内投入单位的熟练劳动力。其中代表研发的难度,根据Segerstrom (1998)关于研发难度的“临时增长效应”方法,研发难度的动态方程为:
(16)
其中,为外生参数,,为经济中的总体创新率。根据式(15)可知,随着研发驱动型经济增长,研发难度越来越高。借鉴Jones(1995),令表示研发人员调整的相对研发难度,以消除以R&D为基础的内生增长模型的规模效应问题。
相类似地,在完全垄断行业 ……(未完,全文共27511字,当前仅显示4948字,请阅读下面提示信息。收藏《论文:如何促进研发驱动型经济增长:R&D补贴还是创新型技能培育》